Ensembles et applications

I Ensembles

Exercice 1. (\bigstar) Soit $E=\{0;1;2;3;4;5;6;7;8;9;A;B;C;D;E;F\}$ l'ensemble des chiffres du système hexadécimal. Considérons les trois parties : $X=\{A;B;E;F\}$, $Y=\{0;2;4;6;8;A;C;E\}$ et $Z=\{3;5;7;9\}$. Donner en extension les parties suivantes :

$$\overline{X}$$
 \overline{Y} , \overline{Z} , $X \cap Y$, $Y \cup \overline{X}$, $X \setminus Z$, $\left(\overline{(\overline{Y} \cap X) \cup Z}\right) \setminus Y$.

Exercice 2. (\star) Rappelons que l'on note $\mathbb{R}^{\mathbb{N}}$ l'ensemble des suites réelles. Notons :

- ullet I_0 l'ensemble des suites réelles de terme initial nul.
- ullet M l'ensemble des suites réelles majorées.
- B l'ensemble des suites réelles bornées.
- L l'ensemble des suites réelles convergentes.
- Pour tout $k \in \mathbb{Z}$, L_k l'ensemble des suites réelles qui convergent vers un réel de [k; k+1].
- C l'ensemble des suites réelles croissantes.
- G l'ensemble des suites géométriques.
- 1) Écrire ces ensembles en compréhension, ainsi que l'ensemble \overline{L} .
- 2) Montrer que $B \subsetneq M$, $L \subsetneq B$, $(C \cap M) \subsetneq L$.
- 3) Décrire $L \cap G$.
- 4) Montrer que $(L_k)_{k\in\mathbb{Z}}$ est une partition de $\mathbb{R}^{\mathbb{N}}$.

Exercice 3. $(\star\star)$ Soit E un ensemble non vide. Montrer que, pour toutes parties A, B et D non vides de E,

1)
$$(A \cup B = B \cap D) \Rightarrow (A \subset B \subset D)$$
,

2)
$$(\overline{A} \subset B) \Leftrightarrow (A \cup B = E),$$

3)
$$A \cup B = A \cup D$$
 $A \cap B = A \cap D$ $\Leftrightarrow B = D$,

4)
$$A \backslash B = \overline{B} \backslash \overline{A}$$
,

5)
$$A \setminus (B \cap D) = (A \setminus B) \cup (A \setminus D)$$
,

6)
$$((A \times B) \cup (B \times A) = D^2) \Leftrightarrow (A = B = D).$$

Exercice 4. (\star) Soient A, B et D des parties d'un ensemble E. Montrer que

$$(A \cup B \cup D) \cap (A \cup B \cup \overline{D}) \cap (A \cup D \cup \overline{B}) = A \cup (B \cap D).$$

Exercice 5. (\bigstar) Soient E, F et G des ensembles non vides. Montrer que $(E \times G) \cap (F \times G) = (E \cap F) \times G$.

Exercice 6. (\star) Montrer que le disque unité $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \leqslant 1\}$ n'est pas le produit cartésien de deux parties de \mathbb{R} .

Exercice 7. (\bigstar) Donner en extension l'ensemble $\mathscr{P}(E)$ quand E est l'un des ensembles suivants :

$$\mathscr{P}(\varnothing), \qquad \{a;\{b\}\}, \qquad \{\diamondsuit;\heartsuit\}, \qquad \big\{0;\{0\};\{\{0\}\}\big\}, \qquad \{\Lambda;0;*\}, \qquad \{A;C;G;T\}, \quad \mathscr{P}(\mathscr{P}(\mathscr{P}(\varnothing))).$$

Exercice 8. $(\star\star)$ Soit $E = \{0; 1; \{0\}; \{0; 1\}\}$. Parmi les propositions suivantes, lesquelles sont vraies?

$$\{0\} \in E \qquad \{0\} \in \mathscr{P}(E), \qquad \{\{1\}\} \subset E, \qquad \{0;1\} \subset E, \qquad \{\{0\};0\} \subset \mathscr{P}(E)$$

$$\{\{0\};\varnothing\}\in\mathscr{P}(E), \qquad \{\{1;\{0;1\}\};\{0\};E\}\subset\mathscr{P}(E), \qquad \{\{\{0;1\}\}\}\in\mathscr{P}(\mathscr{P}(E)).$$

Exercice 9. $(\star\star)$ Soient E et F des ensembles. Étudier les inclusions entre les ensembles suivants :

1)
$$\mathscr{P}(E \cup F)$$
 et $\mathscr{P}(E) \cup \mathscr{P}(F)$,

2)
$$\mathscr{P}(E \cap F)$$
 et $\mathscr{P}(E) \cap \mathscr{P}(F)$

2)
$$\mathscr{P}(E \cap F)$$
 et $\mathscr{P}(E) \cap \mathscr{P}(F)$, 3) $\mathscr{P}(E \times F)$ et $\mathscr{P}(E) \times \mathscr{P}(F)$.

Exercice 10 – Différence symétrique. $(\star\star)$ Soit E un ensemble. Pour toutes parties A et B de E, on note $A\Delta B = (A\backslash B) \cup (B\backslash A)$ leur différence symétrique.

- 1) Représenter graphiquement la différence symétrique de deux parties de E.
- 2) Pour tout $(A, B) \in \mathscr{P}(E)^2$, montrer que $A\Delta B = (A \cup B) \setminus (A \cap B)$.
- a) Pour tout $A \in \mathscr{P}(E)$, déterminer $A\Delta A$ et $A\Delta \varnothing$.
 - b) Pour tout $(A, B) \in \mathscr{P}(E)^2$, montrer que $A\Delta B = \varnothing$ si et seulement si A = B.
- a) Montrer que Δ est commutative : pour tout $(A,B) \in \mathscr{P}(E)^2$, $A\Delta B = B\Delta A$.
 - b) Montrer que Δ est associative : pour tout $(A, B, D) \in \mathscr{P}(E)^3$, $A\Delta(B\Delta D) = (A\Delta B)\Delta D$.
- 5) Montrer que, pour tout $(A,B,D)\in \mathscr{P}(E)^3$, $A\Delta B=A\Delta D$ si et seulement si B=D.
- a) Montrer que $\mathbb{1}_{A\Delta B} \equiv \mathbb{1}_A + \mathbb{1}_B$ [2].
 - b) Proposer une autre démonstration de l'associativité de Δ .

Exercice 11. $(\star\star)$ Soit E un ensemble. Soient A et B dans $\mathscr{P}(E)$. Discuter et résoudre l'équation suivante d'inconnue $X \in \mathscr{P}(E)$:

$$(A \cap X) \cup (B \cap \overline{X}) = \emptyset.$$

Exercice 12. (★★) Expliciter les ensembles suivants :

1)
$$\bigcap_{n\in\mathbb{N}^*}$$
 $\left]-\frac{1}{n};\frac{1}{n}\right[$,

4)
$$\bigcup_{n\in\mathbb{N}^*} \left[\frac{1}{n}; 2024 - \frac{1}{n} \right],$$

7)
$$\bigcap_{n \in \mathbb{N}^*} \left[\frac{1}{n} ; 2024 + \frac{1}{n} \right]$$
,

$$2) \bigcap_{p=1}^{+\infty} \left[-\frac{1}{p}; \frac{2p+1}{p} \right[,$$

5)
$$\bigcup_{n \in \mathbb{N}^*} \left[\frac{1}{n}; 2024 + \frac{1}{n} \right],$$

8)
$$\bigcup_{k=1}^{+\infty} \left(\left[-k; -\frac{1}{k} \right[\cup \right] \frac{1}{k}; k \right),$$

3)
$$\bigcup_{x \in [0;2]} [x-1;x]$$
,

6)
$$\bigcap_{n \in \mathbb{N}^*} \left[\frac{1}{n} ; 2024 - \frac{1}{n} \right]$$
,

9)
$$\bigcup_{n\in\mathbb{N}^*} \{x \in \mathbb{R} \mid nx \in \mathbb{Z}\}.$$

Ш **Applications**

Exercice 13. (★) Reformuler chacun des énoncés suivants par une phrase du type : « L'application de ... vers ... qui à ... associe ... est (ou n'est pas) injective (ou surjective, ou bijective) ».

- 1) Aucun élève de la classe ne partage sa date d'anniversaire avec un autre.
- 2) Tout réel est le logarithme népérien d'un unique réel strictement positif.
- 3) Lorsque $(a, b, c, d) \in \mathbb{R}^4$, on peut avoir a + b = c + d sans avoir a = c et b = d.
- 4) Si a, b, c, d sont quatre rationnels tels que $a + b\sqrt{2} = c + d\sqrt{2}$, alors a = c et b = d.

Exercice 14. (\bigstar) Soit $f:(p,q)\in\mathbb{N}^2\longmapsto p+q$. Donner $f(\mathbb{N}\times\{0\}), f(2\mathbb{N}\times2\mathbb{N}), f^{-1}(\{4\}), f^{-1}(2\mathbb{N})$.

Exercice 15. (\star) Les fonctions suivantes de $\mathbb N$ dans $\mathbb N$ sont-elles injectives? surjectives?

$$f: n \longmapsto n+1, \hspace{1cm} g: n \longmapsto \left\{ \begin{array}{ll} 2024 & \text{si} \quad n=0 \\ n-1 & \text{sinon} \end{array} \right., \hspace{1cm} f \circ g, \hspace{1cm} g \circ f.$$

Exercice 16. (\star) Notons f la fonction partie entière. Expliciter sans démonstration f([0;1]), f([0;1]), f([0;1]) $f(]0;1[), f^{-1}([0;1]), f^{-1}([0;1]), f^{-1}(]0;1]), f^{-1}(]0;1[)$ et enfin $f(f^{-1}([0;1]))$ et $f^{-1}(f([0;1]))$.

Exercice 17. (\star) Les fonctions suivantes sont-elles injectives? surjectives?

1)
$$\begin{cases} \mathbb{R}^2 & \longrightarrow \mathbb{R} \\ (x,y) & \longmapsto x+y \end{cases}$$
2)
$$\begin{cases} \mathbb{Q}^2 & \longrightarrow \mathbb{R} \\ (x,y) & \longmapsto x+y\sqrt{2} \end{cases}$$
3)
$$\begin{cases} \mathbb{Z}^2 & \longrightarrow \mathbb{Z}^2 \\ (x,y) & \longmapsto (x+y,x-y) \end{cases}$$
6)
$$\begin{cases} \mathbb{R} & \longrightarrow \mathbb{R}^2 \\ (x,y) & \longmapsto (y,z,x) \end{cases}$$
6)
$$\begin{cases} \mathbb{R} & \longrightarrow \mathbb{R}^2 \\ x & \longmapsto (x^2,x^3) \end{cases}$$

Exercice 18. (★★) Montrer que l'application

$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ (x,y) & \longmapsto & (x+y,xy) \end{array} \right.$$

n'est ni injective, ni surjective, et donner $f(\mathbb{R}^2)$.

Exercice 19. $(\star\star)$ Notons g la fonction carré de $\mathbb R$ dans $\mathbb R$. Les fonctions suivantes sont-elles injectives? surjectives?

1)
$$\begin{cases} \mathscr{F}(\mathbb{R}, \mathbb{R}) & \longrightarrow \mathscr{F}(\mathbb{R}, \mathbb{R}) \\ f & \longmapsto & f \circ g \end{cases}$$
2)
$$\begin{cases} \mathscr{F}(\mathbb{R}, \mathbb{R}) & \longrightarrow \mathscr{F}(\mathbb{R}, \mathbb{R}) \\ f & \longmapsto & f \times g \end{cases}$$
4)
$$\begin{cases} \mathscr{F}(\mathbb{R}, \mathbb{R}) & \longrightarrow \mathscr{F}(\mathbb{R}, \mathbb{R}) \\ f & \longmapsto & f \times g \end{cases}$$

Exercice 20. (\star) On reprend les notations de l'exercice 2.

1) L'application
$$\varphi: \left\{ \begin{array}{ccc} L & \longrightarrow & \mathbb{R} \\ (u_n)_{n\in\mathbb{N}} & \longmapsto & \lim_{n\to+\infty} u_n \end{array} \right.$$
 est-elle surjective? injective? bijective?

2) L'application
$$\psi: \left\{ \begin{array}{ccc} G \cap \overline{I_0} & \longrightarrow & \mathbb{R}^* \times \mathbb{R} \\ (u_n)_{n \in \mathbb{N}} & \longmapsto & (u_0, u_1) \end{array} \right.$$
 est-elle surjective? injective? bijective?

Exercice 21. (\bigstar) Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$.

- 1) Montrer que, si f est périodique, alors f n'est pas injective.
- 2) Montrer que, si f est majorée ou minorée, alors f n'est pas surjective.

Exercice 22. (\star) Soit D une partie non vide de \mathbb{R} et soit $f:D\longrightarrow\mathbb{R}$ monotone. Montrer que f est strictement monotone si et seulement si f est une bijection de D sur f(D).

Exercice 23. $(\star\star)$ Soit f une fonction croissante de $\mathbb R$ dans $\mathbb R$ telle que $f\circ f=\mathrm{Id}_{\mathbb R}$. Montrer que $f=\mathrm{Id}_{\mathbb R}$.

Exercice 24. $(\star\star)$ Soit $a\in\mathbb{R}$. On définit la fonction

$$f_a: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \left\{ \begin{array}{ccc} x+a & \mathsf{si} & x \geqslant 0 \\ x-a & \mathsf{si} & x < 0 \end{array} \right. \right.$$

Montrer que f_a est injective non surjective si a > 0, et surjective non injective si a < 0. Que dire si a = 0?

Exercice 25. (\bigstar) Notons $f: z \in \mathbb{C} \setminus \{2\} \longmapsto \frac{z+2\mathrm{i}}{z-2}$.

- 1) Montrer que f réalise une bijection de $\mathbb{C}\setminus\{2\}$ sur un domaine de \mathbb{C} à préciser. Expliciter f^{-1} .
- 2) Expliciter les ensembles suivants : $f^{-1}(\mathbb{R})$, $f^{-1}(i\mathbb{R})$, $f^{-1}(\mathbb{U})$ puis $f(\mathbb{R}-\{2\})$, $f(i\mathbb{R})$ et $f(\mathbb{U})$

Exercice 26. (\star) Montrer de deux façons (par le calcul et par un raisonnement géométrique) qu'une similitude directe est une bijection de $\mathbb C$ dans $\mathbb C$ et donner sa bijection réciproque.

Exercice 27. $(\bigstar \bigstar)$ Notons $f: z \in \mathbb{C}^* \longmapsto z - \frac{1}{z}$.

- 1) Soit $u \in \mathbb{C}$. Donner selon u le nombre d'antécédents de u par f.
- 2) Donner l'image de $\mathbb U$ par f et son interprétation géométrique.
- 3) Montrer que f réalise une bijection de $\mathcal{D}^*(0,1)$ (disque ouvert de rayon 1 privé de son centre) sur son image.

Exercice 28 – Quelques ensembles dénombrables. $(\star\star)$ On dit qu'un ensemble est dénombrable s'il existe une bijection de $\mathbb N$ sur cet ensemble.

- 1) Montrer que \mathbb{N}^* , l'ensemble des entiers naturels pairs, l'ensemble des entiers naturels impairs, \mathbb{Z} et \mathbb{N}^2 sont dénombrables.
- 2) En déduire que, pour tout $p \in \mathbb{N}$, \mathbb{Z}^p est dénombrable.
- 3) Soit A une partie infinie de \mathbb{N} (c'est-à-dire, pour tout $n \in \mathbb{N}$, $A \not\subset \llbracket 1 \, ; n \rrbracket$). On pose $a_0 = \min(A)$, $a_1 = \min(A \setminus \{a_0\})$ et, pour tout $n \in \mathbb{N}$, $a_{n+1} = \min(A \setminus \{a_0; a_1; \ldots; a_n\})$.
 - a) Montrer que la suite $(a_n)_{n\in\mathbb{N}}$ est bien définie.
 - b) Montrer que l'application $n \in \mathbb{N} \longmapsto a_n$ est une bijection de \mathbb{N} dans A.

Par conséquent toute partie infinie de $\mathbb N$ est dénombrable.

Exercice 29 – Intervalles équipotents à \mathbb{R} . $(\star\star)$ On dit que deux ensembles E et F sont équipotents s'il existe une bijection de l'un dans l'autre.

- 1) Montrer que tout segment non réduit à un point est équipotent à [0;1].
- 2) Montrer que tout intervalle ouvert non vide est équipotent à \mathbb{R} .
- 3) a) Montrer que l'application

$$f: \left\{ \begin{array}{ccc} [0\,;1] & \longrightarrow & &]0\,;1[\\ & & \\ x & \longmapsto & \left\{ \begin{array}{ccc} \frac{1}{2} & \mathrm{si} & x=0 \\ \frac{1}{n+2} & \mathrm{si} & \exists n\in\mathbb{N}, \ x=\frac{1}{n} \\ x & \mathrm{sinon} \end{array} \right. \right.$$

est une bijection de [0;1] sur]0;1[.

- b) En déduire que tout segment non réduit à un point est équipotent à \mathbb{R} .
- 4) a) Montrer tout intervalle semi-ouvert non vide est équipotent à \mathbb{R}_+ .
 - b) Montrer que

$$f: \left\{ \begin{array}{ccc} \mathbb{R}_+ & \longrightarrow & \mathbb{R}_+^* \\ x & \longmapsto & \left\{ \begin{array}{ccc} \frac{1}{1-x} & \text{si} & x \in [0\,;1[\\ 1-\frac{1}{x} & \text{si} & x \in]1\,;+\infty[\end{array} \right. \right.$$

est une bijection de \mathbb{R}_+ sur \mathbb{R}_+^* .

c) En déduire que tout intervalle semi-ouvert non vide est équipotent à \mathbb{R} .

Cela montre que tout intervalle non vide et non réduit à un point est équipotent à \mathbb{R} .

Exercice 30. $(\star\star)$ Soit E un ensemble et A une partie non vide de E. On définit l'application $f:X\in\mathscr{P}(E)\longmapsto X\cup A\in\mathscr{P}(E)$. Est-elle injective? Préciser $f(\mathscr{P}(E))$.

Exercice 31. (\bigstar) Soient E et F deux ensembles non vides tels que $E \subset F$. Montrer qu'il existe une injection de E dans F et une surjection de F sur E.

Exercice 32. $(\star\star)$ Soit E et F deux ensembles non vides. Soit f une fonction de E dans F.

- 1) a) Montrer que f est injective si et seulement s'il existe g de F dans E telle que $g \circ f = \mathrm{Id}_E$.
 - b) Justifier que, dans ce cas, g est surjective de F dans E.
- 2) a) Montrer que f est surjective si et seulement s'il existe g de F dans E telle que $f \circ g = \operatorname{Id}_F$.
 - b) Justifier que, dans ce cas, g est injective de F dans E.

Cela montre au passage que l'existence d'une injection d'un ensemble E dans un ensemble F est équivalente à l'existence d'une surjection de F dans E.

Exercice 33. $(\star\star)$ Soit E un ensemble non vide et soit $f:E\longrightarrow E$ telle que $f\circ f=f$. Montrer que si f est injective ou surjective, alors $f=\mathrm{Id}_E$.

Exercice 34. $(\star\star)$ Soient E,F et G des ensembles non vides. Soient $f\in F^E$ et $g\in G^F$.

- 1) Supposons que $g \circ f$ est injective. Montrer que f est injective. Qu'en est-il de g?
- 2) Supposons que $g \circ f$ est surjective. Montrer que g est surjective. Qu'en est-il de f?
- 3) Supposons que $g \circ f$ est injective et f surjective. Montrer que g est injective.
- 4) Supposons que $g \circ f$ est surjective et g injective. Montrer que f est surjective.

Exercice 35. $(\star\star)$ Soient E et F des ensembles non vides. Soit f une application de E dans F.

- 1) a) Montrer que, pour tout $A \in \mathscr{P}(E)$, $A \subset f^{-1}(f(A))$.
 - b) Montrer que l'inclusion contraire est fausse en général.
 - c) Montrer que f est injective si et seulement si

$$\forall A \in \mathscr{P}(E), \qquad f^{-1}(f(A)) = A.$$

- 2) a) Montrer que, pour tout $B \in \mathcal{P}(F)$, $f(f^{-1}(B)) \subset B$.
 - b) Montrer que l'inclusion contraire est fausse en général.
 - c) Montrer que f est surjective si et seulement si

$$\forall B \in \mathscr{P}(F), \qquad f(f^{-1}(B)) = B.$$

Exercice 36. $(\star\star\star)$ Soient E, F et G trois ensembles non vides. Soient $f:E\longrightarrow F$ et $g:E\longrightarrow G$ des applications. Considérons l'application

$$h: \left\{ \begin{array}{ccc} E & \longrightarrow & F \times G \\ x & \longmapsto & (f(x), g(x)) \end{array} \right.$$

- 1) Montrer que, si f ou g sont injectives, alors h aussi. La réciproque est-elle vraie?
- 2) Montrer que, si h est surjective, alors f et g aussi. La réciproque est-elle vraie?

Exercice 37 – Théorème de Cantor et paradoxe de Russell. $(\star\star\star)$ Soit E un ensemble non vide.

- 1) Montrer qu'il n'existe pas de surjection de E dans $\mathscr{P}(E)$. On pourra considérer la partie $\{x \in E \mid x \notin f(x)\}$.
- 2) Montrer le paradoxe de Russell : il n'existe pas d'ensemble contenant tous les ensembles (ce paradoxe montre l'insuffisance de la définition d'un ensemble comme collection d'objets).
- 3) a) Montrer que $A \mapsto \mathbb{1}_A$ est une bijection de $\mathscr{P}(E)$ sur $\{0,1\}^E$.
 - b) En déduire qu'il n'existe pas de surjection de E dans $\{0;1\}^E$.