Arithmétique des entiers

I Divisibilité

Exercice 1. (\bigstar) Trouver tous les entiers $n \in \mathbb{N}$ tels que n+1 divise n^2+1 .

Exercice 2. (\bigstar) Soit $n \in \mathbb{N}$. Montrer que n+1 et 2n+1 sont premiers entre eux. Simplifier $(n+1) \binom{2n+1}{n+1}$ et en déduire que n+1 divise $\binom{2n}{n}$.

Exercice 3. (\bigstar) Soit n un entier naturel se terminant par 5. Notons p le nombre formé par les chiffres de n à l'exception du chiffre des unités. Montrer que n^2 est l'entier naturel terminant par 25 et dont les chiffres précédents sont p(p+1).

Exercice 4. (\star) Pour quelles valeurs de $a \in [0; 9]$ le nombre d'écriture décimale 123a4 est-il divisible par 12?

Exercice 5. (\star) Soit $n \ge 2$. Montrer que si n est à la fois un carré parfait et un cube parfait, alors n est la puissance 6-ième d'un entier.

Exercice 6. (\star) Soient a, b et c trois entiers relatifs non nuls tels que $a \wedge b = 1$. Montrer que $a \wedge bc = a \wedge c$.

Exercice 7. $(\star\star)$ Soient a et b deux entiers naturels.

- 1) Montrer que si a^2 divise b^2 alors a divise b.
- 2) Montrer que si a et b sont premiers entre eux et si ab est un carré, alors a et b sont des carrés. Le résultat est-il encore vrai si a et b ne sont pas supposés premiers entre eux?
- 3) Généraliser au cas d'une puissance $k^{\text{ième}}$ avec $k \ge 2$. En déduire que le produit de trois entiers consécutifs non nuls n'est jamais une puissance $k^{\text{ième}}$.

Exercice 8. $(\star\star)$ Pour tout $n \ge 1$, on note $D_+(n)$ l'ensemble des diviseurs positifs de n.

1) Soient a et b deux entiers strictement positifs premiers entre eux. Montrer que la fonction « produit »

$$\begin{cases}
D_{+}(a) \times D_{+}(b) & \longrightarrow & D_{+}(ab) \\
(x,y) & \longmapsto & x \times y
\end{cases}$$

est bijective.

2) Pour tout $n \ge 1$, on note $\sigma(n)$ la somme des diviseurs positifs de n. Montrer que la fonction σ est semi-multiplicative, c'est-à-dire que pour tous a et b premiers entre eux, $\sigma(ab) = \sigma(a) \times \sigma(b)$.

Exercice 9. $(\star\star)$ Notons $\theta = \frac{2\pi}{7}$. En exprimant $\cos(3\theta)$ et $\cos(4\theta)$ en fonction de $\cos(\theta)$, montrer que $\cos(\theta)$ est irrationnel.

Exercice 10. $(\bigstar \bigstar)$ Soit p premier et soit $k \in [1; p-1]$. Montrer que p divise $\binom{p-1}{k} - (-1)^k$.

Exercice 11 – Unicité de l'écriture en base b. $(\star\star)$ Soit $b\in\mathbb{N}\setminus\{0;1\}$. Soient $k\in\mathbb{N}$, $\ell\in\mathbb{N}$ et $r_0,\ldots,r_k,s_0,\ldots,s_\ell$ des entiers naturels strictement inférieurs à b tels que

$$\sum_{i=0}^{k} r_i b^i = \sum_{i=0}^{\ell} s_i b^i.$$

Montrer que $k = \ell$ et que, pour tout $i \in [0; k]$, $r_i = s_i$.

II Congruences

Exercice 12. (\star) Quel est le chiffre des unités de 1789^{1789} ? de 1515^{1515} ? de 2022^{2022} ? de $2017^{2021^{2023}}$?

Exercice 13. (
$$\bigstar$$
) Donner les deux derniers chiffres de $S = \sum_{k=0}^{2023} k!$.

Exercice 14. (\star) Montrer que 7 divise $3^{105} + 4^{105}$.

Exercice 15. (\star) Montrer que, pour tout n impair, $n(n^2-1)$ est divisible par 24.

Exercice 16. (\bigstar) Soit $(a,b) \in \mathbb{Z}^2$. Montrer que : $3 \mid a^2 + b^2 \iff 3 \mid a$ et $3 \mid b$.

Exercice 17. (\bigstar) Résoudre l'équation $3x \equiv 4[7]$ d'inconnue $x \in \mathbb{Z}$.

Exercice 18. (\star) Montrer que, pour tout $n \in \mathbb{N}$:

1) $3^{n+3} - 4^{4n+2}$ est divisible par 11.

3) $2^{4^n} + 5$ est divisible par 21.

- 2) $2^{6n+3} + 3^{4n+2}$ est divisible par 17.
- 4) $n^{2023}(n^{2024}-1)$ est divisible par 8.

Exercice 19. (\star) Soit $n \in \mathbb{Z}$. Montrer que $n^7 \equiv n[42]$.

Exercice 20. (\bigstar) Soient $n \ge 1$ et $(a,b) \in \mathbb{Z}^2$. Montrer que si $a \equiv b[n]$, alors $a^n \equiv b^n[n^2]$.

Exercice 21. (\bigstar) Soit $(a,b,c) \in \mathbb{N}^3$. Montrer que si 7 divise $a^3 + b^3 + c^3$ alors 7 divise abc.

Exercice 22. (\star) Soit x un nombre à (au plus) deux chiffres. Montrer que le nombre à (au plus) six chiffres obtenu en juxtaposant trois fois x est divisible par 37.

Exercice 23. (\bigstar) Montrer qu'il n'existe aucun $n \in \mathbb{Z}$ tel que $\frac{21n-3}{4}$ et $\frac{15n-2}{4}$ soient entiers.

Exercice 24. $(\star\star)$ Montrer que, parmi les 101 dalmatiens, on peut en choisir 11 tels que le nombre total de leurs taches est un multiple de 11.

Exercice 25. $(\star\star)$ Soit $(a,b)\in(\mathbb{N}^*)^2$. Montrer qu'il existe $k\geqslant 1$ tel que $a^k\equiv 1[b]$ si et seulement si a et b sont premiers entre eux. En déduire qu'il existe un multiple de 2023 qui ne s'écrit qu'avec des 1. Et pour 2024? 2025?

Exercice 26. $(\star\star)$ On se donne 2023 entiers dont la somme est nulle. Montrer que la somme de leurs puissances $37^{\text{ièmes}}$ est divisible par 399.

Exercice 27 – Nombres de Fermat. (★★★)

1) Montrer que, pour tout $a \in \mathbb{N}^*$, si $2^a + 1$ est premier, alors a est une puissance de a.

Pour tout $n \in \mathbb{N}$, on appelle $n^{\text{i\`eme}}$ nombre de Fermat le nombre $F_n = 2^{2^n} + 1$.

2) Montrer que F_1 , F_2 , F_3 et F_4 sont premiers.

On admet que $F_4 = 65537$ est un nombre premier.

- 3) a) Montrer que, pour tout $n \in \mathbb{N}$, $F_n 2 = \prod_{k=0}^{n-1} F_k$.
 - b) En déduire que deux nombres de Fermat distincts sont premiers entre eux.
- 4) Pour tout $n \in \mathbb{N}$, expliciter les deux derniers chiffres de F_n selon la valeur de n.
- 5) Soit $n \in \mathbb{N}$ et soit p un facteur premier de F_n .
 - a) Montrer que l'ensemble $E = \{k \in \mathbb{N}^* \mid 2^k \equiv 1[p]\}$ admet un plus petit élément noté d.
 - b) Montrer que tout élément de E est divisible par d.
 - c) En déduire que $d = 2^{n+1}$.

- d) Montrer que $p\equiv 1$ $\left[2^{n+1}\right]$. Pourquoi était-il naturel pour Euler d'essayer 641 lorsqu'il cherchait les diviseurs de F_5 ?
- e) Montrer que, en effet, $641|F_5$.

A ce jour, on sait que, pour tout $n \in [5;32]$, F_n n'est pas premier. On sait que d'autres ne le sont pas non plus, comme F_{73} . Mais on ne sait pas s'il existe d'autres nombres premiers parmi les F_n , $n \geqslant 33$.

Exercice 28. $(\star\star\star)$ Donner la somme des chiffres de la somme des chiffres de la somme des chiffres de 4444^{444} .

III Équations diophantiennes

Exercice 29. (\bigstar) Résoudre l'équation 29x - 11y = 1 d'inconnue $(x, y) \in \mathbb{Z}^2$.

Exercice 30. (\star) En raisonnant modulo 8, montrer que l'équation diophantienne $x^2-2y^2=3$, d'inconnue $(x,y)\in\mathbb{Z}^2$, n'a pas de solution.

Exercice 31. $(\star\star)$ Résoudre l'équation 5x-3y+8z=1 d'inconnue $(x,y,z)\in\mathbb{Z}^3$.

Exercice 32. $(\star\star)$ Montrer, en raisonnant modulo 3, que l'équation $x^2+y^2=3z^2$, d'inconnue $(x,y,z)\in\mathbb{Z}^3$, n'a pas de solution entière.

IV PPCM et PGCD

Exercice 33. (\bigstar) Montrer que pour tout $n \in \mathbb{N}$, la fraction $\frac{21n+4}{14n+3}$ est irréductible.

Exercice 34. (\star) Soit $n \in \mathbb{N}^*$. Donner le PGCD de n! + 1 et de (n + 1)! + 1.

Exercice 35. (\bigstar) Déterminer tous les entiers $n \in \mathbb{N}^*$ tels que $28 \vee n = 140$.

Exercice 36. (\bigstar) Donner $9100 \land 1848$.

Exercice 37. (\star) Soit $n \in \mathbb{N}$. Donner $n^3 + 2n \wedge n^4 + 3n^2 + 1$.

Exercice 38. $(\star\star)$ Déterminer les couples d'entiers naturels (a,b) tels que $a \wedge b = 42$ et $a \vee b = 1680$.

Exercice 39. (★)

- 1) Déterminer tous les entiers naturels non nuls n tels que les divisions euclidiennes de 4373 et 826 par n donnent pour restes 8 et 9.
- 2) Déterminer tous les entiers naturels non nuls n tels que les divisions euclidiennes de 6381 et 3954 par n donnent pour restes 9 et 6.

Exercice 40. $(\star\star)$ Soient M et m deux entiers naturels non nuls. Donner une CNS sur M et m pour qu'il existe $(a,b)\in(\mathbb{N}^*)^2$ tel que ab=M et $a\vee b=m$.

Exercice 41. Montrer que, pour tous entiers naturels n et p supérieurs ou égaux à 2, $\mathbb{U}_n \cap \mathbb{U}_p = \mathbb{U}_{n \wedge p}$.

Exercice 42 – Éléments générateurs de \mathbb{U}_n . $(\star\star)$ Soit $n\in\mathbb{N}^*$. Soit $\omega\in\mathbb{U}_n$.

- 1) Montrer que $\{\omega^p \mid p \in \mathbb{Z}\} = \mathbb{U}_n$ si et seulement s'il existe $k \in [0; n-1]$ premier avec n tel que $\omega = e^{\frac{2\mathrm{i}k\pi}{n}}$.
- 2) En déduire que $\{\omega^p \mid p \in [0; n-1]\} = \mathbb{U}_n$ si et seulement s'il existe $k \in [0; n-1]$ premier avec n tel que $\omega = e^{\frac{2\mathrm{i}k\pi}{n}}$.

V Valuation *p*-adique

Exercice 43. (★) Déterminer le nombre de diviseurs positifs de 5544. Et de 36000000000.

Exercice 44. $(\star\star)$ Quel est le plus petit entier admettant exactement 15 diviseurs?

Exercice 45. (\star) Soit $(a,b) \in (\mathbb{N}^*)^2$. Exprimer la décomposition en produit de facteurs premiers du plus petit entier $n \in \mathbb{N}^*$ tel que b divise an?

Exercice 46. $(\star\star)$ Soit $n\in\mathbb{N}$. Montrer que $v_2(5^{2^n}-1)=n+2$.

Exercice 47 – Formule de Legendre. $(\star\star\star)$ Soient $n\in\mathbb{N}\setminus\{0;1\}$ et $p\in\mathbb{P}$.

- 1) Pour tout $k \in \mathbb{N}^*$, exprimer $\operatorname{card}(\{i \in [1; n] \mid v_p(i) = k\})$.
- 2) Montrer la formule de Legendre :

$$v_p(n!) = \sum_{k=1}^{+\infty} \left\lfloor \frac{n}{p^k} \right\rfloor.$$

Cette somme n'est pas infinie en fait puisque $\left|\frac{n}{p^k}\right|=0$ dès que k est tel que $p^k>n$.

3) Par combien de zéros l'entier 2024! s'achève-t-il?

VI Nombres premiers

Exercice 48. (\star) Les nombres 1, 11, 111, 1111 et 111111 sont-ils premiers?

Exercice 49 – Nombres premiers jumeaux. (★★)

- 1) Soit $p \geqslant 5$ (pas forcément premier). Montrer que parmi p, p+2 et p+4, il y a au moins un multiple de 3. Il en découle que p, p+2 et p+4 ne peuvent pas être tous les trois premiers. Cependant, il n'y a aucune raison pour que p et p+2 (ou p+2 et p+4) ne soient pas premiers tous les deux : deux nombres premiers p et p+20 et p+21 et p+22 sont dits jumeaux. C'est le cas par exemple de p+22 et p+33 et p+44 et p+45 et p+46 et p+46 et p+47 et p+49 et p
 - 2) Soient p et q deux nombres premiers. Montrer qu'ils sont jumeaux si et seulement si pq + 1 est un carré.
 - 3) Montrer que, si p et q sont premiers jumeaux et supérieurs ou égaux à 5, alors p+q est divisible par 12.

Exercice 50 – Produit des nombres premiers inférieurs ou égaux à $n. (\star \star \star)$

- 1) Montrer que pour tout $m \in \mathbb{N}$, $\binom{2m+1}{m} \leqslant 4^m$.
- 2) Soit p un nombre premier vérifiant m+1 . Montrer que <math>p divise $\binom{2m+1}{m}$. En déduire que

$$\prod_{m+1$$

où le produit ne porte que sur les nombres premiers.

3) Montrer que pour tout $n \geqslant 2$, $\prod_{p \leqslant n} p \leqslant 4^n$.

Exercice 51 – Théorème de Wilson. (★★★)

- 1) Soit $p \ge 2$ un nombre premier.
 - a) Montrer que pour tout $x \in [1; p-1]$, il existe un unique élément de [1; p-1] que l'on notera f(x) tel que $x \times f(x) \equiv 1[p]$. Expliciter f(f(x)).
 - b) Soit $x \in [1, p-1]$. Donner le cardinal de $\{x; f(x)\}$.
 - c) Soit $(x,y) \in [1;p-1]^2$. Montrer que les ensembles $\{x;f(x)\}$ et $\{y;f(y)\}$ sont soit disjoints soit égaux.
 - d) Montrer finalement que $(p-1)! \equiv 1[p]$.
- 2) Soit $n \ge 5$ composé. Montrer que $(n-1)! \equiv 0[n]$.
- 3) Nous avons donc montré le théorème de Wilson : un entier $p\geqslant 5$ est premier si et seulement si $(p-1)!\equiv -1[p]$. Ce critère de primalité présente-t-il un intérêt pratique ?
- 4) Si $n \ge 2$, on note f(n) le plus petit nombre strictement positif congru à 2 + 2n! modulo n + 1. Montrer que $\{f(n) \mid n \ge 2\} = \mathbb{P}$.